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Pleasingly parallel computations are those that involve completely independent
work. We investigate these in the context of a problem we call AllPageRank. �e
AllPageRank problem involves computing a subset of accurate PageRank entries
for each possible seeded PageRank vector. AllPageRank is representative of a
wider class of possible computational procedures that will run a large number
of experiments on a single graph structure. Our study involves computing the
AllPageRank vectors for a multi-million node graph within a reasonable timeframe
on a modern shared memory, high-core count computer. For this setting, we
parallelize over all of the seeded PageRank vector computations, which are all
independent. �e experiments demonstrate that there are non-trivial complexities
in obtaining performance even in this ideal situation. For instance, threading
computational environments gave scaling problems with a shared graph structure
in memory. Also sparse matrix ordering techniques and multivector, or SIMD,
optimizations were required to get a total runtime of a few days. We also show how
di�erent algorithms for PageRank that have di�erent algorithmic advances and
memory access patterns behave to guide future investigation of similar problems.
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1 introduction

Current single-machine computing environments are a mixture of high-power CPUs and
GPUsmixed to large quantities of memory of various speeds. O�en these are subsequently
networked together into large distributed computational platforms. Cloud computing
further complicates the scenario as advanced resources can be purchased for the time
needed. �ese environments present a wide-rage of opportunities to schedule what are
o�en called pleasingly parallel computations, namely, those that have a large amount of
independent computation that can be scheduled simultaneously.

We wish to investigate how to leverage and utilize such resources in the context of a
large graph computation. While the focus on large graph computation is o�en in terms of
solving problems on massive graphs with distributed computation, the downside to such
computations is that they o�en involve nearly linear-time algorithms [Gleich andMahoney,
2016]. �ese have runtimes such as O(n log n) and typically involve a small number of
passes over all the edges of the graph, for instance running a connected components
analysis or computing a PageRank vector. Consequently, the algorithm performance is
largely dominated by how well the computation maps to the IO and memory system
strategies of the platform.

Instead, the computation we investigate is the all-to-all personalized PageRank compu-
tation. Given an n-node graph, this involves computing the personalized PageRank vector
associated with each node. We state the problem formally in Section 2. Consequently,
there are n such computations that are all independent and decoupled. In terms of the
scale, we are targeting graphs with up to a 100 million edges and with up to 10 million
nodes. Real-world instances of such graphs are the LiveJournal social network crawl with
around 4 million vertices and 67 million edges and the Orkut social network crawl with 3
million vertices and around 220 million edges.

Because the output from the all-to-all problem would be O(n2
) data, we seek to

output only summary statistics of the personalized PageRank vectors including inverse
participation ratios for the solutions that serve as a so�-measure of the number of non-
zeros, as well as the largest 1000 entries of the vectors. �e large values are commonly
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used as latent measures of node similarity [Gleich, 2015; Voevodski et al., 2009; Pan et al.,
2004]. Hence, a simple strategy for this computation is to load the graph into memory on
all computers available, take the fastest single-core algorithm for personalized PageRank,
and run it as many places as possible.

�is picture becomes more interesting in light of the heterogeneous nature of comput-
ers. For instance, we can use vector or SIMD instructions to potentially compute multiple
PageRank vectors at once, if the algorithm used is amenable to it. Second, large shared
memory machines may have a large number of computing cores (over 200 is possible with
commercially available systems that cost less than $250k.) However, many of these cores
share memory bandwidth resources that can impede some algorithms. �is suggests that
sharing access to a single graphmay not scale. Furthermore, GPUs are constantly changing
their underlying compute resources. Fourth, the algorithm performance itself is likely
to be sensitive to choices of data distribution within the graph due to memory locality.
Hence, even for this simple setting there is a rich set of complications to simplistically
expecting a pleasingly parallel algorithm to scale.

Our goal is to investigate these performance di�erences in the context of the simple
personalized PageRank computation. We chose that computation as it is representative of
a wide swath of related computations on graphs including scalable methods for all-pairs
shortest paths. Moreover, the algorithms to compute it are simple. �ey are specializa-
tions of well-known matrix computation algorithms including the power method and
Gauss-Seidel method [Golub and van Loan, 2013]. We can easily investigate a diverse
collection of possible implementations that have di�erent memory characteristics. Our
focus was to keep the investigation simple and re�ective of what might be expected from
an informed, but non-expert, user of the algorithms. �is is someone who understand
how the algorithms works, where the relevant bottlenecks might be, but does not want
to attempt to re-engineer the algorithm for the absolute maximum level of parallelism
or performance. �is individual is optimistic that the pleasingly parallel nature of the
computation will be su�cient to drive performance. Towards that end, we discounted
using GPUs at the moment as the toolkit for graph computations on GPUs is still evolving.

We have done all of these experiments in the Julia computing environment to make
it easy for others to further investigate our ideas. It is also a high-level programming
language that makes it simple to implement a variety of algorithms in a consistent fashion.
Regarding the idea that high-level languages may be slow, we initially benchmarked the
Julia implementation against a C++ implementation of a similar algorithm [Kurokawa
et al., 2013] and found the runtimes of the methods to be within 10% of each other.

2 the pagerank and allpagerank problem

�e PageRank problem begins with a graphG, which could be both weighted and directed.
However, in the interest of simplicity, we take G to be unweighted, directed, and strongly
connected. �is greatly simpli�es the setting and puts the focus on the relevant pieces
of the computation. Let us note that we lose no generality by doing so: a PageRank
computation on a graph with multiple strongly connected components can be reduced to
a sequence of PageRank computations on the individual strong components, and usually,
these additional computations are much smaller because most real-world networks only
have a single large strongly connected component (see, among others who make this
observation, [McGlohon et al., 2008]).

Fix an ordering for G’s vertices from 1 to n and identify each vertex with its index in
this order. Let A be the resulting adjacency matrix of G

A i j =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 (i , j) is a directed i → j edge
0 (i , j) is not an edge.
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We use the following additional notation

d = vector of degrees d i = ∑ j A i j

p = vector of inverse degrees p i = 1/d i

P = the stochastic transition matrix P = ATDiag(p)
ei = the ith column of the identity, ei has a 1 in the ith row and 0 elsewhere

where we use the Diag(⋅) operator to put the argument along the matrix diagonal. �e
PageRank problem [Page et al., 1999; Page, 2001; Langville and Meyer, 2006; Gleich,
2015] is to compute the stationary distribution of a random walk that with probability α

follows a standard random walk model on G and with probability 1 − α jumps according
a teleportation distribution vector v, where v encodes the probability of jumping to each
node. Typically α is between 0.5 and 0.99. �roughout this paper, we use what became
the standard value of 0.85 [Langville and Meyer, 2006]. �e stationary distribution
corresponds to a solution of the following nonsingular linear system

(I − αP)x = (1 − α)v.

Personalized, or seeded, PageRank problems set v to be a single node, or in this case, a
column of the identity matrix ei and the linear system

(I − αP)xi = (1 − α)ei . (1)

As an aside, we note that a standard feature of most PageRank constructions [Gleich, 2015]
is the dangling correction vector c. In this case, we do not have this correction vector
because we assume that we are given a strongly connected graph.

Our goal is to compute xi for all i from 1 to n, or more simply, the matrix

X = (1 − α)(I − αP)−1 .

We wish the entries of X to be of high accuracy, and intend to compute each column of X
such that the 1-norm error is provably less than (1 − α)/n. Because the graph is strongly
connected, the matrix X is dense when computed exactly. For a graph with one million
vertices this graph is too large to store even on a large shared memory machine. We thus
de�ne the AllPageRank problem.
Problem 1 (AllPageRank) Fix a graph G, let A be a binary adjacency matrix indicating the

presence of an edge, let P be a column stochastic matrix giving transition probabilities on the

same graph. �eAllPageRank problem is to compute the following entries of (1−α)(I−αP)−1

· the participation ratio for each column xi , which is a so� measure of the number of

non-zeros in the column

· the non-zero values of X ⊙ A and XT
⊙ A, and

· the k largest entries in each column, for k = 100 or k = 1000.
Here ⊙ is the element-wise, or Hadamard, product. Note that the transition matrix P
need not come from the transition described above and could come from anywhere, such
as the common stochastic transformations in PageRank [Gleich, 2015]. Nonetheless, we
will always use P = ATDiag(p) in this manuscript. �e results of AllPageRank could be
used to form a nearest neighbor approximation, to form PageRank a�nities [Voevodski
et al., 2009], or simply as a di�usion approximation of the underlying graph. Additional
applications of such an output involve similarmethods that solve protein function inference
problems [Jiang et al., 2017; Lin et al., 2018]. Finally, this can be related to some idea of a
“PageRank e�ective resistance” on an edge.

We stress that there are applications of the output for PageRank, but that our general
goal is to use PageRank as a model computation that is representative of the challenges
faced by more general numerical computing problems on graphs. �is is akin to Page-
Rank’s widespread use to evaluate the performance of distributed graph computation
engines [Kyrola et al., 2012; Low et al., 2012; Perez et al., 2015; Aberger et al., 2015; Ching
and Kunz, 2011; Pingali et al., 2011]. See additional examples of related computations in
Section 5.

3



3 pagerank algorithms

�ere are a few classic algorithms for PageRank computations: the power method, the
Gauss-Seidel method, and the push method in two variations. We brie�y explain these
algorithms, give a small pseudocode for the computation, as well as an easy-to-compute
error bound.

For the following set of algorithms, we will describe how to use them to compute
a single vector, although we note that all of them are amenable to computing multiple
vectors simultaneously as discussed in Section 3.6. We will use the notation x to refer to
the solution vector to (I − αP)x = (1 − α)v where v = ei for some �xed i. Each iterate in
a high-level description of the method will be written x(k); what exactly constitutes an
iteration may vary among the discussions. For instance, for Gauss-Seidel and the Push
Methods, it is o�en helpful to analyze a single update step within an iteration. We have
endeavored to keep the discussion consistent and try to point to the pseudocode to clarify
any ambiguities. Note that, in the pseudocode and discussions about it, however, we will
be more clear about memory and use x, y and r to denote vectors of memory associated
with an iteration rather than their interpretations about the solution.

3.1 THE POWER METHOD
What is usually called the power method for PageRank is probably better called the
Richardson method for the linear system formulation of PageRank [Gleich, 2015] because
the two iterations are exactly identical in the scenario that each iterate is a probability
distribution. �e idea underlying both is to unwrap the linear system (1) into the �xed
point iteration

x(0)i = ei x(k+1)i = αPx(k)i + (1 − α)ei .

�emain work at each iteration is the matrix vector product Px(k). �is can be done either
by computing a sparse matrix P where the non-zero value is the probability AT Diag(p) or
instead, by storing just the graph structure of AT alone without any values for the non-zero
entries along with the vector p. To �nd a point where ∥x(k) − x∥1 ≤ τ, this method requires
at most 2 log(τ)/ log(α) iterations [Bianchini et al., 2005]. As noted in [Gleich, 2015], we
can terminate this earlier when ∥x(k+1) − x(k)∥1 ≤ τ(1 − α) because that guarantees the
same error condition. �is helpful circumstance arises due to the the relationship between
∥x(k+1) − x(k)∥1 and the residual of the linear system.

1 Inputs:

2 - adjacency matrix A (in compressed

column storage),

3 - p as the inverse degree vector of A,
4 - 0 < α < 1,
5 - v is the column of X to compute

6 - error tolerance τ = (1 − α)/n

7 - two vectors of memory x and y
8 initialize x as 0

9 set x[v] = 1
10 set maxiter = 2 log(τ)/ log(α)

11 for iter=1:maxiter

12 for i=1:n

13 update = 0

14 for j in nonzeros(A[:,i])

15 update += x[j] * p[j]

16 end

17 y[i] ← α ∗ update

18 end

19 y[v] ← y[v] + 1 − α

20 set δ = ∥x − y∥1
21 x, y ← y, x # swap x, y
22 if δ/(1 − α) ≤ τ

23 return x and converged

24 end

25 end

FIGURE 1 – Pseudocode for the power
method to compute the vth column of
X = (1 − α)(I − αP)−1 . �is algorithm
takes two vectors of memory and performs
random reads from the memory in x and
p, but then linearly ordered writes to the
memory y.

In our implementation, this iteration is implemented using two vectors of memory for
a compressed sparse column representation of the adjacency matrix A. �e pseudocode
is in Figure 1. In this algorithm, we store an iteration in x and use the memory in y to
compute the next iterate x(k+1). A�er the entire update is done, we compare the vectors
and swap.

3.2 GAUSS-SEIDEL
Gauss-Seidel is a simple variant of the power method where we update the solution vector
immediately a�er computing the value update in Figure 1. �is requires only one vector
of memory. Writing this update formally is o�en annoyingly intricate – it involves an idea
called a regular splitting [Varga, 1962] – but is an extremely simple change in terms of the
code. �us, we start with the pseudocode in Figure 2.

�ere are a few subtle di�erences from the pseudocode of the power method. First,
we initialize the vector x from zero. �is choice will turn out to make tracking the error
in the Gauss-Seidel iteration much easier [Boldi and Vigna, 2011]. Second, the algorithm
actually stores x(k) ⊙ p in the memory x where ⊙ is an element-wise product. �is choice
is made so that we can compute the quantities in update on lines 14-17 without looking
up the values in p. Note that we could have done the same transformation for the power
method, but we found it slightly decreased performance. Here, the value of δ tracks the
total sum of x(k) = x ⊙ d a�er the loop 13-24. �is corresponds to the sum of an iterate
x(k) of the Gauss-Seidel method. As we will see next, for Gauss-Seidel starting from 0, we
have that∑n

i=1[x(k)]i gives the 1-norm of the error.
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�e error analysis of the method is fairly straightforward. �e iterations we analyze
are the unscaled iterations that would correspond to multiplying x in the code by d (ele-
mentwise) at each step. We call these x(k) as discussed in the previous paragraph. In what
follows x is the solution vector. However, let us note that what constitutes an iteration is
not the loop on line 11, but the loop on line 13. �is is because this method is easiest to
analyze if we only consider what happens when a single element of x(k) is changed on
Line 23. In our analysis, we will show that each iterate x(k) is bounded above by the true
solution x. Formally, this can be stated as x(k) ≤ x. We will establish this by showing that
iterates only increase the value of x(k) and they never get too large. If x(k) ≤ x is the case,
then the error

∥x − x(k)∥1 = ∑
i

[x − x(k)]i = ∑
i

[x]i −∑
i

[x(k)]i = 1 −∑
i

[x(k)]i .

Here, we only used that the sum of the entire PageRank vector ∑i[x]i = 1 for the true
solution on a strongly connected graph. Note that in line 22, we update δ which is
tracking the sum of the unscaled vector x(k) and a�er the full loop on 13-24, we have
computed δ = ∑i[x(k)]i . Consequently, this termination criteria maps to what we use in
the algorithm.

1 Inputs:

2 - adjacency matrix A (in compressed

column storage)

3 - p as the inverse degree vector of A,
4 - d as the degree vector of A,
5 - 0 < α < 1,
6 - v is the column of X to compute

7 - error tolerance τ = (1 − α)/n

8 - one vector of memory x
9 initialize x as 0

10 set maxiter = 2 log(τ)/ log(α)

11 for iter=1:maxiter

12 set δ = 0
13 for i=1:n

14 update = 0

15 for j in nonzeros(A[:,i])

16 update += x[j]

17 end

18 update *= α

19 if i == v # the right hand side

20 update += 1 − α

21 end

22 δ ← δ + update

23 x[i] ← update ∗ p[i]

24 end

25 if δ ≥ 1 − τ

26 x ← x⊙ d # scale x by d element−

wise

27 return x and converged

28 end

29 end

FIGURE 2 – Pseudocode for the Gauss-Seidel
method to compute the vth column of
X = (1 − α)(I − αP)−1 . �is algorithm
takes one vector of memory. It maintains
x as the Gauss-Seidel iterate elementwise
scaled by p. �is performs random reads
from the memory in x, and then linearly
ordered writes to the same memory x. �is
works like the power-method from Figure 1
where the updates are immediately applied
in the vector x.

Now, it remains to show that we indeed have the solution upper bounding each
unscaled iterate. Note that, because x(0) = 0 we immediately have x(0) ≤ x. We will also
strengthen our setup and note that the residual of the linear system (1)

r(0) = (1 − α)v − (I − αP)x(0)

is also non-negative. �e importance of the relationship with the residual is that the
residual and error satisfy the following system of equations

(I − αP)(x − x(k)) = r(k) .

�e matrix (I − αP) is an M-matrix [Langville and Meyer, 2004] with a non-negative
inverse, so the error vector x − x(k) ≥ 0 when r(k) ≥ 0. �us, it su�ces to show that
r(k+1) ≥ 0 given r(k) ≥ 0. In this case, we know that x(k) and x(k+1) are the same in all but
one coordinate. Let u correspond to the index i that is changed in iteration k. We compute

x(k+1) = x(k) + µkeu

where µk is the value of update − eTu x(k). Expanding out the code to get µk gives

µk =

⎧
⎪⎪
⎨
⎪⎪
⎩

α∑ j→u x
(k)

j /d j − x
(k)
u u /= v

α∑ j→u x
(k)

j /d j + (1 − α) − x
(k)
u u = v

.

Note that µk is exactly the uth element of the residual of the linear system (1)

r(k) = (1 − α)v − (I − αP)x(k) ⇒ µk = eTu r(k) . (2)

We have that µk ≥ 0 because r(k) ≥ 0 by assumption. At this point, we still need to show
that r(k+1) ≥ 0, and we have

r(k+1) = (1 − α)v − (I − αP)(x(k) + µkeu) = r(k) − µk(I − αP)eu
= (r(k) − µkeu) + µkαPeu

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

non-negative

Now, we also have that

[r(k) − µkeu]i =
⎧
⎪⎪
⎨
⎪⎪
⎩

0 i = u

[r(k)]i i /= u
≥ 0

because µk is the uth component of r(k) (see (2)). �us we have r(k+1) ≥ 0.
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�is justi�es that the algorithm in Figure 2, if it terminates, will have the correct error.
To see that it will terminate, note that this same analysis shows that we reduce the sum of
the residual at each step of the algorithm. We can also get convergence through classical
results about the convergence of Gauss-Seidel on M-matrices [Varga, 1962].

Although there is no sub-asymptotic theory about Gauss-Seidel compared with the
power method, ample empirical evidence suggests that, for most graphs, Gauss-Seidel
runs in about half the iterations of PageRank. �e asymptotic theory in Varga [Varga, 1962]
shows that Gauss-Seidel is asymptotically faster than the powermethod. However, this is in
terms of the spectral radius alone. �is asymptotic theory, however, can be misleading for
PageRank as an example with a random graph from [Gleich, 2009] shows. To foreshadow
our results, Gauss-Seidel will be the method to beat for computing PageRank with a single
thread. �is mirrors results found in other scenarios as well [Gleich et al., 2010; McSherry,
2005].

3.3 THE CYCLIC PUSH METHOD
One challenge with Gauss-Seidel is that it requires in-neighbor access to the edges of the
graph. �ese are still accessed consecutively, whichmakes streaming solutions a possibility.
�ere are nevertheless many graph systems that provide the most e�cient access to the
out-neighbors of a directed graph. It turns out that there is a way to implement the Gauss-
Seidel for these systems using something called the push method for PageRank, the big
di�erence, however, is that we maintain two vectors of memory. �e �rst variant of the
pushmethod we will describe will exactly map to the Gauss-Seidel computation above.
�e key di�erence is that it explicitly maintains a residual vector.

Suppose we kept a solution vector x(k) along with a residual vector r(k). �en the
single-entry update in Gauss-Seidel corresponds to

x(k+1) = x(k) + eueTu r(k) .

(�is expression arises from (2) combined with the µk variation on the Gauss-Seidel
update.) �is is easy to compute, but then we have to update r(k) to get the new residual
r(k+1). In the push method, this second update dominates the work.

Recall the expression for the residual update that arose in our theory on Gauss-Seidel

r(k+1) = (r(k) − µkeu) + µkαPeu .

To perform this update, all we need to do is set the uth element of r(k) to 0, and then
lookup the values of the uth column of P. Note that the matrix P = ATDiag(p) and so
the uth column is just the uth row of A, which encodes the out-neighbors, scaled by p[u].
�e resulting algorithm is given by the pseudocode in Figure 3.

1 Inputs:

2 - adjacency matrix A (in compressed

row storage),

3 - p as the inverse degree vector of A,
4 - 0 < α < 1,
5 - v is the column of X to compute

6 - error tolerance τ = (1 − α)/n

7 - two vector of memory x, r
8 initialize x, r as 0

9 set r[v] ← (1 − α)

10 set maxiter = 2 log(τ)/ log(α)

11 for iter=1:maxiter

12 set δ = 0
13 for i=1:n

14 µ = r[i]

15 x[i] += µ

16 δ ← δ + x[i]

17 # now handle the residual update

18 r[i] = 0

19 ρ = α ∗ µ ∗ p[i]

20 for j in nonzeros(A[i,:])

21 r[j] += ρ

22 end

23 end

24 if δ ≥ 1 − τ

25 return x and converged

26 end

27 end

FIGURE 3 – Pseudocode for the cyclic push
method to compute the vth column of
X = (1 − α)(I − αP)−1 . �is algorithm
takes two vectors of memory. It maintains
x as the Gauss-Seidel iterate and r as the
residual (1 − α)ev − (I − αP). �is performs
random writes to the memory in r. Note that
this iteration is mathematical identical to
Figure 2, but it uses compressed row storage
for A instead of compressed column storage.

�is iteration is mathematically identical to Gauss-Seidel. �e iteration in this form
was described byMcSherry [McSherry, 2005] as an alternative way of computing PageRank
that was more amenable to optimization because we can use properties of the residual
to choose when to revisit or skip updating a node. �e term “push” comes from the idea
that when you update x[i] you “push” an update out to the neighbors of i in the residual
vector.

3.4 THE PUSH METHOD WITH A WORK QUEUE
�e name “push method” actually comes from [Andersen et al., 2006]. �at paper utilized
the push method to compute a personalized PageRank vector of an undirected graph in
constant time (where the constant depend on α and the accuracy τ) for a weaker notion
of error. �is weak notion corresponds to �nding an iterate with error that satis�es
0 ≤ x− x(k) ≤ τd. So the error on a node with a large degree could be large. �is enabled a
number of clever ideas to show that this can be done in work that does not depend on the
size of the graph. One of the key ideas is that this algorithm maintains a queue of vertices
to process, and hence, avoids storing or working with vectors that are the size of the graph.

In this case, we adopt similar ideas and add a work queue of vertices that have not yet
satis�ed their tolerance. In comparison with the cyclic push method, this maintains the
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same amount of memory, in addition, when the residual associated with a vertex goes
above a threshold, we add it to a queue to process in the �gure. Namely, if the residual on
a node is ω then we can show that the maximum change to the solution vector due to that
element is ω(1 − α). �ere might be as many as n items in the residual, so if we want a
solution that is accurate to 1-norm error τ, then we can check if the residual is smaller
than (1 − α)τ/n. If it’s smaller than this, we can show it will not impact the solution.

�e pseudocode with the queue is in Figure 4. �e algorithm is identical to Figure 3,
except that we visit vertices in the order that they have been added to the queue. �e only
small subtlety is that we can check if a vertex is in the queue in order to avoid adding it
multiple times based on the current value of the residual. In Line 25, we check if this is the
�rst time that the element increased beyond the threshold ω. �e other small detail is that
we keep a running sum of the vector x in δ, which is incremented based on the value of µ
at each step. In a low-precision implementation, this sum would need to be accumulated
at a higher precision as it involves an extremely large running sum. As such, we can use
the previous error analysis which justi�es that when the total sum of the vector x exceeds
τ, then we have converged.

1 Inputs:

2 - adjacency matrix A (in compressed

row storage),

3 - p as the inverse degree vector of A,
4 - 0 < α < 1,
5 - v the column of X to compute

6 - error tolerance τ = (1 − α)/n

7 - two vector of memory x, r
8 initialize x, r as 0

9 set r[v] ← (1 − α)

10 set maxiter = 2n log(τ)/ log(α)

11 set δ = 0
12 let Q be a queue initialized with

vertex v

13 ω = (1 − α)τ/n

14 while Q is not empty

15 i ← next(Q)

16 µ = r[i]

17 x[i] += µ

18 δ ← δ + µ

19 # now handle the residual update

20 r[i] = 0

21 ρ = α ∗ µ ∗ p[i]

22 for j in nonzeros(A[i,:])

23 rj = r[j]

24 r[j] = rj + ρ

25 if r j < ω and r j + ρ ≥ ω

26 add j to the end of the Q

27 end

28 if δ ≥ 1 − τ

29 return x and converged

30 end

31 end

FIGURE 4 – Pseudocode for the push method
with a work queue to compute the vth col-
umn of X = (1 − α)(I − αP)−1 . �is
algorithm takes two vectors of memory. It
maintains x as the Gauss-Seidel iterate and
r as the residual (1 − α)ev − (I − αP). �is
performs random writes to the memory in
r and picks what amounts to a randomly
scattered entry of i to process next.

3.5 RELATED ALGORITHMIC ADVANCES
It was [Jeh andWidom, 2003] and [McSherry, 2005] that realized that the push formulation
o�ered a number of additional opportunities to accelerate PageRank computation by
skipping and optimizing potential updates in a Gauss-Seidel-like fashion. �ese were
later improved upon by [Berkhin, 2007] and [Andersen et al., 2006] with the idea of
the workqueue. �e connection to Gauss-Seidel only arose later [Esfandiar et al., 2010;
Boldi and Vigna, 2011]. �e algorithms in our paper do not use the full �exibility of these
methods as they are o�en specialized techniques that arise for web-graphs.

We have ignored here a wide class of methods for PageRank that work via Monte
Carlo approaches [Avrachenkov et al., 2007, 2011; Lofgren et al., 2014; Bahmani et al., 2011].
�ese methods all have trouble getting high accuracy entries, although they tend to get
the top-k lists correct and should be considered for applications that only desire that type
of information. Krylov methods are only competitive for PageRank when α is extremely
large [Golub and Greif, 2006]. �ere have been numerous attempts to parallelize the
computation of a single PageRank vector [Gleich and Zhukov, 2005], especially on graph
processing systems [Kyrola et al., 2012; Low et al., 2012; Perez et al., 2015; Aberger et al.,
2015; Ching and Kunz, 2011; Pingali et al., 2011]. In particular, these methods o�en utilize
ideas closely related to the workqueue notion of the push method. Analysis of these results
show that they o�en fail to be useful parallelizations of the underlying problem and have
signi�cant overhead compared to simple implementations [McSherry et al., 2015].

3.6 MULTIVECTOR TRANSFORMATIONS
�e algorithms described so far here—and most of the discussions of PageRank that we
are aware of—deal with computing a single PageRank or personalized PageRank vector.
(�e biggest exception are a number of techniques to attempt to approximate all PageRank
vectors [Jeh and Widom, 2003; Avrachenkov et al., 2011].) With the idea in mind that
we are considering an educated, but non-expert, user of these algorithms we note the
following idea. Modern processors feature vector execution units o�en called SIMD
(single instruction, multiple data) or simply vector instructions. Because the data access
pattern for the power method, Gauss-Seidel, and the cyclic push method are entirely
independent of both the choice of the right hand side ei and any elements of the vectors,
then we can conceptually execute the same iteration on multiple vectors simultaneously.
�is involves few changes to the code assuming that the language supports some notion of
treating a vector of entries like a scalar. �us, for each of the methods above, we create a
variation that processes multiple vectors simultaneously. Our technique to do this in the
Julia programming language is to replace a 1 dimensional array of data with a 1 dimension
array of statically sized vectors. �is enables the compiler to unroll and auto vectorize
code that involves multiple entries at once in a way that is consistent with our informed
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user persona. �e code is essentially unchanged from the previous cases and we refer
interested readers to our online codes to reproduce these ideas. (See Section 6.)

4 results

We now conduct a set of experiments using these four PageRank algorithms in the setting
of the AllPageRank problem. �at is, we run them to compute multiple columns of the
matrix X. �e primary performance measure we are considering is the number of columns

computed per unit time. We run the algorithms for one of two time intervals: 14.4 minutes
and 5 minutes. Note that 14.4 minutes is exactly 1/100th of a day, and so the number of
vectors computable in 24 hours is exactly 100 times greater. For 5 minutes, the factor
is roughly 300 times larger. Note that the AllPageRank problem involves a great deal of
computation, and so it is natural to, perhaps, think of running this for a few days. Months
or weeks are less reasonable, though.

We consider two parallelization strategies: threads and processes. In the threaded
implementation, we load the graph information into memory once and use the high-level
language’s threading library to launch a given number of computation threads. �ese
threads continue to compute single columns, or multiple columns simultaneously, of the
solution until the time limit is exhausted. �ey all access the same shared memory copy.
�e process scenario is largely the same, except we launch independent processes that all
have their own copy of the graph information. Note that we do not consider any parallel
setup or IO time; but let us state that this was negligible for our experiments – it might
take 1-5 minutes to setup an execution which we expect to run for hours. Our code for
these experiments is all available online (see Section 6 for the reference).

Also in keeping with our informed user persona, we did not perform any heroic
measures to eliminate all simultaneous usage of the machine. We asked other users not
to use the machines during our tests, which, we believe was respected. �ere were a
few processes from other users that would appear to be doing intermittent work. (As an
example, we may see someone running the unix “top” command to see if the machine was
being used).

4.1 DATA AND MACHINES
We report on two datasets, each of which is a strongly connected component of a larger
graph. �ese data come from [Leskovec and Krevl, 2014; Mislove et al., 2007].

· Orkut has 2, 997, 355 nodes and 220, 259, 736 directed edges.

· LiveJournal has 3, 828, 682 nodes and 65, 825, 429 directed edges.

�e two machines we use are . . .

· A 64-core (4x 16-core) shared memory server with Xeon E7-8867 v3 (2.50GHz)
CPUs and 2TB of RAM; this is con�gured in a fully connected topology. Each
processor has 4 memory channels, 45MB of L3 cache, and 256KBx16 of L2 cache.

· A 192-core (8x 24-core) sharedmemory server with Xeon Platinum 8168 (2.70GHz)
CPUs and 6TB of RAM; this is con�gured in a hypercube topology with 3 connec-
tions per CPU. Each processor has 6 memory channels, 33 MB L3 Cache, and 24x1
MB of L2 cache.

4.2 PERFORMANCE ON A 64-CORE SYSTEM
We begin our discussion by looking at the results of all the algorithms on the 64-core
server as these are the simplest to understand. �ese are summarized in Table 1, which
shows how performance varies on 1, 32, and 64 threads and processes when we compute
1, 8, or 16 vectors simultaneously. In principle, using multiple vectors simultaneously will
result in the Julia compiler generating AVX and SIMD instructions on the platform, which
can greatly increase the computational power. We see that this increases performance by
around a factor of 4 or 5. We see only a small change going from 8 to 16 vectors computed
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simultaneously, and sometimes this will decrease performance (see the threaded results
on the power method and processes results for Gauss-Seidel). �e results with processes
are generally, but not always, faster than the results with the same number of threads.

Note that the power method uses more iterations than either the Gauss-Seidel and
Cyclic Push methods, and so we expect it to be slower from an algorithm perspective
(although the memory access patterns are more amenable to parallelization). Gauss-Seidel
and the Cyclic Push method are mathematically identical and so execute the same number
of iterations. �e di�erence in performance is entirely due to the memory access patterns.
�ese results show that it is better to have random reads than random writes as the power
method is faster than the cyclic push method. Although the Queue Push method should
do the least work of all, it seems that the additional cost of maintaining the queue causes
the method to run the slowest.

In summary, these results point to challenges in linearly scaling the work involved in
this pleasingly parallel computation. �ey also highlight the need to compute multiple
vectors simultaneously. Note that running Gauss-Seidel with 1 process or thread produces
about half the output of the power method with 32 threads computing only 1 vector at a
time.

(a) �reads

Method Vectors
1 8 16
�reads
1 32 64 1 32 64 1 32 64

Power 25 399 731 88 1984 2752 96 1584 2784
Gauss-Seidel 46 675 1324 152 3128 5320 176 3248 5680
Cyclic Push 41 626 849 104 2240 3192 96 1840 3040
Queue Push 12 213 323 56 944 1504 64 1232 2048

(b) Processes

Method Vectors
1 8 16
Processes
1 32 64 1 32 64 1 32 64

Power 24 438 697 88 1800 2920 96 1696 2912
Gauss-Seidel 28 690 965 144 3064 5704 176 3616 5632
Cyclic Push 27 544 723 96 1992 2848 96 1776 2480
Queue Push 9 189 302 40 880 1536 48 1296 1872

TABLE 1 – Vectors computed on the LiveJour-
nal graph within 14.4 minutes. �ese results
are from a threads (a) and processes (b) im-
plementation on the 64-core server on the
64-core server. For each method, we vary the
number of vectors computed simultaneously
among 1, 8, and 16 along with varying the
number of threads from 1, 32, to 64.

4.3 SPARSE MATRIX ORDERING
�e next experiment we consider is using a sparse matrix ordering scheme to improve
the locality of reference among the operations. �is is a standard technique in sparse
matrix computations that is commonly taught in graduate curricula. We use the METIS
algorithm [Karypis and Kumar, 1998] and generate 50 and 100 partitions. We then re-
order the matrix so that each partition is a consecutive block. Since the computations with
multiple vectors all had uniformly higher performance, we only report the results for the
methods that compute 8 vectors simultaneously.

Again, these results show a considerable increase in performance for most methods
(Table 2). �e performance of Gauss-Seidel increases by 30%, for instance. Notable
exceptions include the power method and Queue Push methods on Orkut. �e partitions
took less than an hour to compute. Since we envision running these computations for
over 10 hours, the permuted method would overtake the non-permuted one a�er about 4
hours. Consequently, it seems this technique is still worth doing even for these pleasingly
parallel computations. In particular, note that the cyclic push method shows a very large

9



change in performance and largely runs faster than the power method in all cases. Given
the random write nature of this work, this is perhaps unsurprising, but it is useful to know
that this type of algorithm is especially sensitive to ordering.

(a) LiveJournal

Method Ordering
Native 50 100

Power 2752 3312 3544
Gauss-Seidel 5320 7128 6864
Cyclic Push 3192 4272 4928
Queue Push 1504 1808 1936

(b) Orkut

Method Ordering
Native 50 100

Power 904 896 944
Gauss-Seidel 1744 1920 2120
Cyclic Push 696 1104 1176
Queue Push 512 424 512

TABLE 2 –�e change in the number of vec-
tors computed on LiveJournal and Orkut
as we vary the sparse matrix order shows
that a small bit of careful ordering dramat-
ically improves performance. �ese results
are from the 64-core server in a threading
environment with the 14.4 minute interval.
�e ordering varies from the the native order
of the �le as it emerged from the strongly
connected component computation to one
computed using 50 and 100 partitions with
METIS. �e algorithms all compute 8 vec-
tors simultaneously. Performance improves
for all algorithms except the queue push and
power methods on orkut. Note the dramatic
increase in the performance of Cyclic Push
on orkut.

4.4 PERFORMANCE ON A 192-CORE SYSTEM
Next, we investigate how performance changes on a 192-core system for the algorithms that
run 8 vectors simultaneously. Table 3 shows the results for the threaded and independent
process scenarios. �is table highlight the problem with scaling threaded computation on
this particular system. As the number of threads increases, the performance decreases.
We investigate this �nding in the next section (Section 4.5) as well. In fact, on the orkut
networks, there is no work done when using 192 threads within 14.4 minutes for most of
the trials. We repeated this trial to verify that the result was consistent – it was.

Overall, these results show challenges when using threads on a machine with a more
complex memory topology, even when using pleasingly parallel computations.

(a) LiveJournal

Method �reads or Processes
1T 1P 96T 96P 192T 192P

Power 104 120 3232 5960 272 7768
Gauss-Seidel 264 272 10248 13920 3592 19160
Cyclic Push 160 168 6432 7728 4752 9920
Queue Push 64 64 2752 3256 1808 4496

(b) Orkut

Method �reads or Processes
1T 1P 96T 96P 192T 192P

Power 40 40 1048 1768 0 888
Gauss-Seidel 88 88 2384 4184 0 5800
Cyclic Push 48 48 1584 1864 1040 2016
Queue Push 24 24 680 872 0 920

TABLE 3 – Vectors computed by the 192-
core server show problems with scaling
the threaded computation. �ese results
show both the threaded (T) and process (P)
environment with the 14.4 minute interval.
�ese results all used the ordering computed
with 50 partitions and the algorithms all
compute 8 vectors simultaneously. We
repeated the experiment with 192 threads
and veri�ed a similar result from another
trial; we were unable to determine a cause
for why these results showed no vectors
computed.

4.5 PERFORMANCE SCALING
�e �nal experiment we conduct is a performance scaling study for the best algorithm
we found: the SIMD Gauss-Seidel algorithm. We use 8-vectors as there was only a minor
performance di�erence (if any) for the 16-vector variant. Here we also use the data that
has been reordered with METIS in order to get a sense of scaling when the computation is
performing well. We vary the number of threads or processes in each system and report the
scaling results in Figure 5. �ese show that the threading performance quickly degrades
on the machine with 192 cores and the per-process implementation is needed to get good
scaling results. Note also that neither setup scales particularly well for a pleasingly parallel
computation.
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(d) 192-core, Processes

FIGURE 5 – Scaling results for threads and
processes implementations. �e text an-
notations give the raw number of vectors
computed by that method within 5 minutes
as well as the speedup ratio over the 1 thread
or process result.

5 related problems

AllPageRank is just a simple instance of amore general need for this type of computation. A
closely relatedmethodology underlies the network community pro�le calculation [Leskovec
et al., 2008; Mahoney et al., 2012; Jeub et al., 2015; Fountoulakis et al., 2018]. �is setting
involves running a local clustering algorithm for hundreds or thousands of times – inde-
pendently – on a shared graph. �ese computations o�en take hours to run on graphs of
similar size.

A related computation is the GHOST technique used for network alignment [Patro
and Kingsford, 2012]. �is calculation extracts a subset of vertices from a large graph and
then computes an eigenvalue histogram on the induced subgraph. �ese histograms are
used as a invariant and characteristic feature for network alignment methods. (As an aside,
we note that there are better ways to get a related concept called the network density of
states [Dong et al., 2019].)

In summary, the style of computation used for the AllPageRank problem occurs repeat-
edly and is worth understanding given that the computations o�en consume considerable
time and informed users.

6 conclusion

�e focus of this manuscript is on a pleasingly parallel computation: the AllPageRank
problem we introduce. When we investigated computing the vectors involved in this
problem on two shared memory parallel systems, it showed that expecting linear speedup
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on these problems is unrealistic. Even in this simple case, our results show that two ideas
are crucial to get reasonable performance:

· computing multiple vectors simultaneously

· using matrix ordering techniques.

Both of these are easy to incorporate into parallel execution libraries that could be de-
signed for this class of tasks, which is distinct from the current focus of distributed graph
computation libraries. Our code is available online for others to reproduce our �ndings
on new and emerging systems:

https://github.com/YanfeiRen/pagerank

Back to the problem at hand, we are able to compute around 20,000 columns of X for
the LiveJournal graph in 14.4 minutes. �is shows that it would take around two days with
192 cores to generate all the information for the AllPageRank problem. For the orkut graph,
it would take around 5 days. We note that both are reasonable and acceptable runtimes
to generate an interesting derived dataset. Waiting a week for an experiment is a fairly
standard scenario in the physical sciences.

�at said, this is still an expensive computation. Making these techniques common-
place on graphs of this scale would likely require another factor of 10 increase in perfor-
mance so that the results come in 5 hours on 192 cores, or say, 15 hours on 64 cores. Monte
Carlo techniques may be one possibly, along with reduced precision computation. Our ex-
periments all used 64-bit �oating point values. �e computation may be possible in 32-bit
�oating point values although it will require some care as values such as 1/4, 000, 000 are
within a factor of 10 of the unit roundo� value for 32-bit �oats. Finally, we note that there
aremethods that should further accelerate Gauss-Seidel, such as successive over-relaxation.
While there is a negative �nding about SOR on general PageRank systems [Greif and
Kurokawa, 2011], there are many PageRank systems and near relative PageRank systems
that would use symmetric positive de�nite matrices [Mahoney et al., 2012] where SOR,
with the optimal choice of ω, might be productive. Preliminary tests show this yields
another 2-3 fold improvement for undirected graphs.

We realize that there are additional strategies that an expert could take to improve
performance such as developing custom routines to control memory placement and thread
locality. We note, however, that these tools are di�cult to access from high-level libraries
where our hypothetical informed user resides.
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